Stimulation of the Ca(2+)-ATPase of sarcoplasmic reticulum by disulfiram.

نویسندگان

  • A P Starling
  • J M East
  • A G Lee
چکیده

Disulfiram [bis(diethylthiocarbamoyl)disulphide] has been found to stimulate reversibly the Ca(2+)-ATPase of skeletal muscle sarcoplasmic reticulum. At pH 7.2, 2.1 mM ATP and 25 degrees C, ATPase activity was found to double on addition of 120 microM disulfiram. Stimulation fitted to binding of disulfiram at a single site with a Kd of 61 microM. Disulfiram had no effect on the Ca2+ affinity of the ATPase or on the rate of phosphorylation of the ATPase by ATP, but increased the rate of dissociation of Ca2+ from the phosphorylated ATPase (the transport step) and increased the rate of dephosphorylation of the phosphorylated ATPase. It also decreased the level of phosphorylation of the ATPase by Pi, consistent with a 7.5-fold decrease in the equilibrium constant of the phosphorylated to non-phosphorylated forms (E2PMg/E2PiMg) at 80 microM disulfiram. Disulfiram had no significant effect on the concentration of ATP resulting in stimulation of ATPase activity, suggesting that it does not bind to the empty nucleotide-binding site on the phosphorylated ATPase. Studies of the effects of mixtures of disulfiram and jasmone (another molecule that stimulates the ATPase) suggest that they bind to separate sites on the ATPase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Poges 387-394 ACYLPHOSPHATASE STIMULATES Ca 2+ TRANSPORT AND Ca2+-DEPENDENT ATPase ACTIVITY IN CARDIAC SARCOPLASMIC RETICULUM

Acylphosphatase purified from heart muscle actively hydrolyzes the phosphoenzyme intermediate of cardiac sarcoplasmic reticulum Ca2+-ATPase. This effect was evident with acylphosphatase concentrations (up to 100 units/mg sarcoplasmic reticulum .protein) that fall within the physiological range, and the low value of the apparent Kin, on the order of 10t M, suggests a high affinity towards this s...

متن کامل

The Effect of Verapamil Administred before the Reperfusion Insult in Isolated Preconditioned Rat Heart on the Microsomal ATPase and Mitochondrial Enzyme Activities

Background: Calcium overload and free radical mediated damage in the mitochondria is the most important pathological changes associated with myocardial ischemic-reperfusion injury. The verapamil post-treatment has been previously reported to prevent reperfusion-induced myocardial injury but functional recovery may be delayed due to the drug's inherent direct myocardial depression effect. In the...

متن کامل

The dimeric form of Ca2+-ATPase is involved in Ca2+ transport in the sarcoplasmic reticulum.

To identify the functional unit of Ca(2+)-ATPase in the sarcoplasmic reticulum, we assessed Ca(2+)-transport activities occurring on sarcoplasmic reticulum membranes with different combinations of active and inactive Ca(2+)-ATPase molecules. We prepared heterodimers, consisting of a native Ca(2+)-ATPase molecule and a Ca(2+)-ATPase molecule inactivated by FITC labelling, by fusing vesicles load...

متن کامل

Lipid structure and Ca(2+)-ATPase function.

Effects of lipid structure on the function of the Ca(2+)-ATPase of skeletal muscle of sarcoplasmic reticulum are reviewed. Binding of phospholipids to the ATPase shows little specificity. Phosphatidylcholines with short (C14) or long (C24) fatty acyl chains have marked effects on the activity of the ATPase, including a change in the stoichiometry of Ca binding. Low ATPase activity in gel phase ...

متن کامل

The structure of the Ca2+-ATPase of sarcoplasmic reticulum.

In this article the morphology of sarcoplasmic reticulum, classification of Ca(2+)-ATPase (SERCA) isoenzymes presented in this membrane system, as well as their topology will be reviewed. The focus is on the structure and interactions of Ca(2+)-ATPase determined by electron and X-ray crystallography, lamellar X-ray and neutron diffraction analysis of the profile structure of Ca(2+)-ATPase in sa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 320 ( Pt 1)  شماره 

صفحات  -

تاریخ انتشار 1996